Point processes for bearing fault detection under non-stationary operating conditions
نویسنده
چکیده
Bearing faults represent the most frequent mechanical faults in rotational machines. They are characterized by repetitive impacts between the rolling elements and the damaged surface. The time intervals between two impacts are directly related with the type and location of the surface fault. These time intervals can be elegantly analyzed within the framework of renewal point processes. With such an approach the fault detection and identification can be performed irrespective of the variability of rotational speed. Furthermore, we show that by analyzing the entropy of the underlying counting process by means of wavelet transform, one can perform fault detection and identification without any information about the operating conditions. The effectiveness of the approach is shown on a data-set acquired from a two–stage gearbox with various bearing faults operating under different rotational speeds and loads.
منابع مشابه
Application of Signal Processing Tools for Fault Diagnosis in Induction Motors-A Review-Part II
The use of efficient signal processing tools (SPTs) to extract proper indices for the fault detection in induction motors (IMs) is the essential part of any fault recognition procedure. The 2nd part of this two-part paper is, in turn, divided into two parts. Part two covers the signal processing techniques which can be applied to non-stationary conditions. In this paper, all utilized SPTs for n...
متن کاملA Robust Bearing Fault Detection and Diagnosis Technique for Brushless DC Motors Under Non-stationary Operating Conditions
Rolling element bearing defects are among the main reasons for the breakdown of electrical machines, and therefore, early diagnosis of these is necessary to avoid more catastrophic failure consequences. This paper presents a novel approach for identifying rolling element bearing defects in brushless DC motors under non-stationary operating conditions. Stator current and lateral vibration measur...
متن کاملMulti-Fault Detection of Rolling Element Bearings under Harsh Working Condition Using IMF-Based Adaptive Envelope Order Analysis
When operating under harsh condition (e.g., time-varying speed and load, large shocks), the vibration signals of rolling element bearings are always manifested as low signal noise ratio, non-stationary statistical parameters, which cause difficulties for current diagnostic methods. As such, an IMF-based adaptive envelope order analysis (IMF-AEOA) is proposed for bearing fault detection under su...
متن کاملMulti-Scale Hermitian Wavelet Order Envelope Spectrum Based Bearing Fault Detection and Diagnosis
The multi-scale Hermitian wavelet order envelope spectrum based bearing fault detection and diagnosis method under run-up condition is presented in this paper. This new approach based on the fusion of the computed order tracking, Hermitian wavelet transform and envelope spectrum is used for detection defects in roller element bearings. Firstly, Non-stationary vibration signal under run-up condi...
متن کاملFault Detection ( Condition Monitoring ) of Induction Motor based on Wavelet Transform
Presently, many condition monitoring techniques that are based on steady-state analysis are being applied to Induction motor. However, the operation of induction motor is predominantly transient, therefore prompting the development of non-stationary techniques for fault detection. In this paper we apply steady-state techniques e.g. Motor Current Signatures Analysis (MCSA) and the Extended Park’...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011